PRECISION TECHNOLOGY IN OPTICAL SPACE INSTRUMENTS

Now and in the future | Ir. B.T.G. de Goeij (TNO Space Systems Engineering)

innovation for life

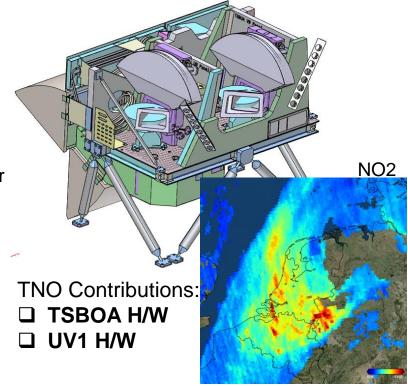
CONTENT

- Introduction
 - > TNO, Myself and Sentinel 5
- Challenges for Opto-Mechanical Space Instruments and Industry
 - Technological, Processes and Business
- 5 Years from Now
 - Opportunities and challenges


Precision Technology in Optical Space Instruments 27 March 2018

INTRODUCTION TNO AND MYSELF

- Over 50 years of heritage of working on space projects
- Focus on opto-mechatronical systems for space and high tech industry
 - Scientific optical instruments
 - Laser communication terminals
 - Sun Sensors


- Senior Space Systems Engineer
- Just over 12 years of experience in developing:
 - Sun Sensors
 - Scientific optical instruments
- Involved in setting development priorities

Precision Technology in Optical Space Instruments 27 March 2018

INTRODUCTION SENTINEL 5

- The Sentinel-5 mission focuses on monitoring of trace gas concentrations and aerosols in the atmosphere to support operational services covering air-quality near-real time applications, air-quality protocol monitoring and climate protocol monitoring.
- The Sentinel-5 instrument is a high resolution spectrometer system operating in 5 different spectral bands:
 - **UV-1** (270-300nm)
 -) UV2VIS (300-500nm)
 - NIR (685-773nm)
 - > SWIR-1 (1590-1675nm)
 - > SWIR-3 (2305-2385nm).
- Spatial resolution is below 8km (>300nm); below 50km (<300nm)</p>

CHALLENGES FOR OPTO-MECHANICAL SPACE INSTRUMENTS AND INDUSTRY

- > Sentinel 5 requirements lead to state of the art (ideally even better) production technology:
 - Freeform mirrors with high accuracy and low roughness
 - Complex mechanical structures with high precision and accuracy

20 mechanical interface planes Tolerance 10µm (typical)

Complex shape with tolerances 50-100nm

CHALLENGES FOR OPTO-MECHANICAL SPACE INSTRUMENTS AND INDUSTRY

CHALLENGES FOR OPTO-MECHANICAL SPACE INSTRUMENTS AND INDUSTRY

-) Besides the required technical state-of-the art there are other challenges.
- Right to play
 -) Heritage
 - Certification and process control
 - Cleanliness
- Difficult industry (at the moment):
 - Opto-mechatronical instruments for space are single offs
 - Firm Fixed Prices
 - High Risk and low profit
 - No / limited recurring products

5 YEARS FROM NOW

- Commercial space application (incl laser comm.) will also reach optomech space applications.
 - More recurring product
 - Opportunity to maintain knowledge and processes
 -) Opportunity to increase margins
 - Synergy between commercial applications and scientific missions
- Technology
 - Even tighter tolerances to reach "plug and play" instruments
 - Imbedding of new technologies in space Example: 3D printing

